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Abstract—Machine learning allows to create complex models
if provided with enough data, hence challenging more traditional
system identification methods. We compare the quality of neural
networks and an ARX model when use in an model predictive
control to command a drone in a simulated environment. The
training of neural networks can be challenging when the data
is scarce or datasets are unbalanced. We propose an adaptation
of prioritized replay to system identification in order to mitigate
these problems. We illustrate the advantages and limits of this
training method on the control task of a simulated drone.

Index Terms—identification, model predictive control, neural
networks, learning

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) for various
inspection tasks is more and more appealing. Tasks such
as precision agriculture or building inspection are benefiting
greatly from the improvement of aerial robotic capabilities.
However, most drone applications require an expert to ac-
complish their mission. This requirement can be a serious
limitation in many situations. For example, underground mines
inspection doesn’t allow for real time communications. In
such case autonomous control of the aerial robots becomes
a necessity.

Trajectory planification is an active area of research. Model
Predictive Control (MPC) is a control algorithm that is widely
used in this context [9], [11], [15]. MPC is built on top of
a model of the controlled system. The design of the model
can be achieved by different methods. Model identification
is one of them, which works well on a wide variety of
systems. Recently machine learning and neural networks have
challenged the traditional system identification tools.

We study here the advantages and limitations of using neural
networks as the system model in the control algorithm. We
discuss the challenge of data generation as neural networks
require a large quantity of data to be trained. We investigate
the importance of the data quality and explore the possibility
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of prioritizing data samples during model training to alleviate
these difficulties.

After presenting the control algorithm used, we compare
three methods for identifying the system: a traditional linear
approach using the ARX algorithm, a standard machine learn-
ing approach where we train a neural network on a dataset
without preprocessing and the same neural network which we
trained using a new method inspired from [12]. The dynamic
model is then used by the MPC to sample trajectories as
in [13].

We show that the system model obtained by the neural
network, especially using prioritized sampling, performs better
in term of multistep errors. We test such model for the control
of a simulated drone in two different situations. First, we use
the drone in normal conditions then we add a suspended mass
to the drone to disturb its dynamics. We discuss the gain of
the neural network model in regard to its computational cost.

II. RELATED WORK

To allow for more autonomy, control algorithms are con-
tinuously developed and improved, in particular MPC has
been used for the control of drones in various settings with
success [3], [10]. MPC are based on the online optimization
of cost functions. In our implementation we use a version of
that algorithm called Model Predictive Path Integral (MPPI)
described in [13] which is able to take into account complex
cost functions. The flexibility given by the design of the cost
function allows to implement both objectives and constraints
which is very useful in drones control as mission and security
often are in competition.

Machine learning has been used with great results in recent
years in several control settings [4], [15]. Neural network have
shown capabilities to model complex systems which make
them a tools of choice for the implementation of predictive
systems. However to be able to train these networks a lot
of data is necessary which implies an important amount of
demonstration of the system in its environment.

A way to lessen this burden is to collect data from the
system while the algorithm is running as demonstrated in [14].
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The model is first only trained with minimal demonstrations.
The accuracy of the neural network model is then improved
by collecting more data as the system operates and reuses it
in a training session.

The data collection problem is often encountered in learning
settings. For example the Deep Q-Networks (DQN) algorithm
that solves Atari games [8] needs millions of examples to be
effective. An interesting way to alleviate this problem has been
developed in [12] where the samples are given importance
depending on how much they are supposed to help the learning
process. This is closely linked to importance sampling which
also uses weighted samples [5].

In our case we propose an improvement on the retraining
done in [14] by using prioritized sampling. This allows to
improve sample efficiency and to counter the negative impact
of unbalanced datasets. To alleviate the bias induced by our
prioritization we combine it with importance sampling as
in [12].

III. METHOD

A. Control

MPC uses a model of the system dynamic to predict the
behavior of the system.

Xt+dt = F (Xt, Ut). (1)

Given the state Xt and a command Ut, the model F provides
the next state Xt+dt. More specifically, in our drone settings
our state Xt is composed of a position pt and a velocity vt.
The position update is done using simple kinematic update
while the velocity update is done using the identified model
f for the dynamic :{

pt+1 = pt + vtdt
vt+1 = vt + f(vt, ut)dt

(2)

This prediction is used to optimize a cost function over a
receding horizon. The first command calculated is the only one
applied from the optimization before optimizing again from
the new step. This lets the controller take into account future
events while computing the next command. It is also possible
to consider the n-first commands instead of the first one. This
allows for a more flexible time window for the processing of
the next command. In our implementation, we use a command
buffer to ensure the rate of the control. The impact on the
performance for using n-step predictions instead of one step
prediction is far less than the impact of uneven rate control.

We use here the MPPI version developed in [14] which
proposes to calculate the desired control from the evaluation of
sampled trajectories. The approach is described in algorithm 1.

The prediction of the next step state as described here is
done using the last step state and command. This can be
generalized to using the N last step states and commands.
The cost of a trajectory φ(Sk) is computed as the sum of
the cost of the states of the trajectory. In our case, each state
cost is calculated as the euclidean distance between the actual
drone pose and the desire pose. It could also be derived from
a cost map or be a combination of different factors.

Algorithm 1 Model Predictive Path Integral
Require: F : Dynamic model

T : number of timesteps
K : number of sampled trajectories
φ : cost function
ut : commands sent at step t
st : state at step t
U = u1, u2, . . . , uT : initial control sequence

Sample εk = ε1k, ε
2
k, . . . , ε

T
k ∼ N (µ, σ2)

for k = 0 to K − 1 do
for t = 1 to T do

ut = ut + εtk
st+dt ← F (st, ut)

end for
Sk ={st for t in [0, T ]}
Ck ← φ(Sk)

end for
β ← mink[Ck]

η ←
∑K−1

k=0 exp(−(Ck − β))

for k = 0 to K − 1 do
wk ← 1

η exp(−(Ck − β))
end for
for t = 1 to T do

ut = ut +
∑K

k=1 wkε
t
k

end for
return U

B. Model Identification

System identification is a central problem of every MPC
implementation. This problem is usually solved using standard
algorithms such as ARX [7]. Machine learning algorithms, that
are used with a lot of success in vision, are also very powerful
to achieve system modeling. By using neural network in a
regression setting, it is possible to model with relative ease
even non-linear systems.

One of the main problem of these learning methods for
identification is that they are very dependent on the quantity
and quality of the data used during the training of the model.

In our case, we want a model of the dynamic of the system,
the f function in the equation (2). To be able to do so we need
to gather data of the drone in as many situations as possible.
In simulation, data can be gathered by recording the drone
flying while sending the right command to generate any data
needed. However, it is not always the case. Indeed there can
be a lot of constraints in experiments, particularly when trying
to solve real world problems. Battery charge being limited
shorten the time available for data gathering. Security and
regulation are also to be taken into consideration. Moreover
the cost of crashing the drone may limit the range of actions
available.

All these limitations have two main consequences for
dataset generation. First the data is more scarce, second the
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action space (command send to the drone) is less explored.
Exploration, especially when guided by an expert, can lead
to unbalanced dataset. This means that some dynamic will be
very well covered (moving in a given plane) while other will
be rare (altitude variation for instance).

In [14], it is shown that a way to solve the problem is
to retrain the model as the experiment is being conducted,
training the model on a growing dataset of samples relevant
to the task. However in that setting most of the information
contained in the newer dataset are already samples that are
correctly handled by the previous model. Going in straight
line is the most common behavior for a drone and we keep
spending time learning to do that, which is not very efficient.

The unbalanced dataset problem has been encountered in
the Reinforcement Learning (RL) settings by the DQN al-
gorithm [8]. While trying to solve the Atari game, it uses
a buffer for training. However the information in that buffer
is not evenly distributed among the samples. By prioritizing
some samples over others, it was shown [12] that it is possible
to accelerate the training, using less data while conserving the
same performance. We propose to use a similar approach here.

To prioritize samples, a measure of their importance is
needed. How much can be learned from a given sample is a
rather hard question. In the RL settings the temporal difference
error is what seems to be the most logical choice. In our
context, we use the distance δi between the prediction of our
model and the actual observation (of sample i), following the
idea that our model as more to learn from samples where its
prediction fails the most. We then use equation (3) to draw a
new collection of sample from our original dataset by picking
event i with probability P (i).

P (i) =
δαi∑
k δ

α
k

(3)

The α hyper-parameter allows to soften the prioritization.
Choosing α = 0 gives the uniform distribution, in that case
there is no prioritization at all. While a higher α value may
encourage learning on edge cases.

One problem is that we are now trying to learn from a
different distribution than the one we had before prioritization.
We correct the bias induced by the prioritization by using
importance-sampling [5] weights :

wi =
( 1

N

1

P (i)

)β

(4)

With β = 1 the prioritized sampling bias is completely
corrected but it also slow down the learning. The α parameter
increases the aggressiveness of the prioritization while the β
parameter increase the correction thus, there is an equilibrium
to find between both.

IV. RESULTS

A. Experimental settings
Our test are conducted in a simulated environment us-

ing the gazebo1 simulator. The UAV is simulated using the

1 http://gazebosim.org/

Algorithm 2 Prioritized Sampling
Require: data, K number of trial and Task

trainingData← data
sampleWeight← ∅
for k = 0 to K do

F ← Train(trainingData)
newdata← Task(controller(F ))
data← data ∪ newdata
N number of sample in data
for i = 0 to N do

δi ←
∥∥Yi − F (Xi, Ui)

∥∥
P (i)← δαi∑

k δαk

wi ←
(

1
N

1
P (i)

)β

sampleWeighted← {wi}0≤i≤N

trainingData← sample data di ∼ P (i)
end for

end for

tum simulator2 which provides the same interface as the real
Parrot drone3. The implementation makes extensive use of the
Robotic Operating System (ROS)4 framework of which we
used the kinetic version. Controllers run at 5Hz as it is the
rate at which the drone driver publishes the odometry.

The experiment are done on a Linux 4.13 using the Ubuntu
distribution on an Intel i5-6200U CPU with 8GB of RAM in
DDR3.

The system we are trying to identify is the drone using
the low level Parrot drivers. Regarding data generation, three
different approaches are taken.

First a simple Proportional Integral Derivative (PID) is used
to fly the drone in a square defined by four destination points.
This provides an easy way to generate data of the system in
closed loop but does not explore all the dynamic of the drone
as discussed in section IV-B2.

Secondly, in order to generate a dataset that better explores
the action space, we design a dummy planner that goes in a
random direction with random speed. For stability, constraints
preventing the drone from crashing were included. The planner
is designed for uniformly sampling the action space. Due to
these constraints, the vertical dynamics might be a little more
represented: to prevent crashing, the drone is asked to regain
altitude if its current one is too low. This generate data in open
loop as there is no feedback in this controller.

Lastly, we also collect data of the system in closed loop
with the MPPI controller while it performs the task. The task
consists in the following of a trajectory that goes around a
cube in order to solicit dynamics on the three dimensions of
space.

2 http://http://wiki.ros.org/tum simulator
3Copyright ©2016 Parrot Drones SA. All Rights Reserved
4 http://www.ros.org/
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B. Model identification

We are modeling the dynamic of the system. The input used
are the velocity vx, vy, vz, vrz and command ux, uy, uz, urz of
the two previous timestep, t and t− dt if we want to predict
the t + dt step. Here dt is the timestep. The output of the
model F is the velocity at next timestep :


vx, vy, vz, vrz(t− dt)
ux, uy, uz, urz(t− dt)
vx, vy, vz, vrz(t)
ux, uy, uz, urz(t)

F−→ vx, vy, vz, vrz(t+ dt) (5)

1) ARX and Neural Network: For the ARX model, we use
a second order model. The neural network used is composed
of a succession of an input dense layer, two hidden dense layer
and an output dense layer. The input layer is composed of 16
nodes corresponding to the input variable described in (5). The
hidden layers have 32 nodes each and the output layer have 4,
corresponding to the desired state output. Both hidden layer
use Rectified Linear Unit (ReLU) activation. The output layer
uses a linear activation. The loss used for the training is the
mean square error, and the optimizer is ADAM [6].

That network is implemented using the Keras [2] python
framework on top of the TensorFlow library [1].

First we compare our neural network and an ARX network.
Both the ARX model and the neural network model are trained
with the same data. Here, we use a balanced dataset for which
all the dynamics are explored with similar frequencies. The
dataset is obtained using the “dummy planner” previously
mentioned. To evaluate their performance, we measure the
error between their prediction and the actual observation.

In the figure 1, we see that they both perform very well on
the vx dynamic. As this dynamic is linear this is expected.
The average error on the test set for the neural network is
0.064m/s for the velocity along the x axis. This is twice as
good as the ARX performance that has an average error on the
same dataset of 0.146m/s for this axis. This is reasonable as
such error in our condition would translate for the controller
into a position error for one step of 3 cm.

In the figure 2 we can see that for a more complex dynamics
such as the vertical one in which the low level controller has
to counteract the gravity, the gap between the neural network
and the ARX model is more important. Along that axis the
average error of the neural network is 0.045m/s where it is
0.107m/s for the ARX model. Notice that the range of speed
for vz (between −0.6m/s to 0.6m/s) is more narrow than
for vx (between −1.5m/s to 2m/s).

2) Neural Network with prioritized sampling: In the previ-
ous section, neural networks were shown to be able to perform
a more precise model identification (in terms of one-step
prediction error) than the ARX algorithm. To achieve this,
a rich dataset of 60468 samples, equivalent to about 3 hours
and 20 minutes of navigation data, was used. This data was
generated in order to obtain a balanced dataset containing all
the required dynamic. This implies important limitations for
the applicability of neural network for system identification. To
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Figure 1. comparison of ARX and neural network model on linear dynamic.
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Figure 2. comparison of ARX and neural network model on non linear
dynamic.

alleviate this burden we use the prioritized retraining method
described in III-B.

To highlight the interest of prioritized sampling, we compare
the different models in terms of multistep error. Each model
is used to simulate the trajectory of the drone over 20 steps
(4 s) while a constant command is applied. The applied speed
command (ux = 0.5m/s, uy = 0.5m/s, uz = 0.1m/s, urz =
1 rad/s) is chosen such that all the dimensions of the dynamics
are affected.

We first train the networks on a very unbalanced dataset
generated with a PID which does not explore all the action
space. Then we progressively add samples with more dynamic
features. We construct the dataset such as the first couple of
training exposes the network to only vx and vy commands and
then progressively add rotation and vertical commands. The
choice of hyperparameters is important here as it affects the
performance. In this case we obtain the result with α = 0.6 and
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Figure 3. comparison of Neural network with and without prioritized replay
after 8 successive training run in term of multistep prediction error

β = 0.4. We show that the neural network using prioritized
sampling is able to faster use the new data and learn a better
model in terms of multistep error in figure 3. The two networks
are evaluated after having both been retrained eight times on
the growing dataset. ARX is shown for comparison.

C. Control

To evaluate the quality of the models in term of control
we use them as part of an MPPI controller. We evaluate the
controller in a trajectory following task. The trajectory used
is the following of the edges of a cube such that all dynamics
(vx, vy and vz) are used. In our experiment the target moves
at constant speed.

First, we consider the models we previously evaluated on
multistep prediction and evaluate them. To this end, we use
the distance between the targeted pose from the trajectory
and the effective pose of the drone as the error. The result
of this evaluation is shown in table I. Both neural networks
perform better than the ARX model. It is important to note
that for this experiment all the rate where set to 5Hz. It
is possible to increase ARX performance by increasing the
controller rate. It is harder to do so for the neural networks
because this would require to change the hardware on which
they run. Indeed while the computational cost of the ARX
model prediction is negligible compare to the overall MPPI
controller, the neural network forward propagation pushes the
whole controller computational time just below the 200ms
that are available.

Table I
MAXIMUM AND AVERAGE ERROR

ARX classical NN prioritized NN
max error [m] 1.789 0.882 0.819

average error [m] 1.272 0.562 0.508
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average error of prioritized NN

Figure 4. comparison of neural networks with or without prioritized replay
in term of maximum and average error.

One advantage of the neural networks is their capacity
to keep improving as new data are available for them to
train on. In order to compare the capability of the prioritized
training to the normal training, we evaluate the controller on
the control task over several episodes. Between each episode,
the drone land and the network is trained again on a dataset
combining the data used to train the model initially to witch
we add the data collected during the previous episodes. The
result of that experiment is depicted in figure 4. The neural
network using resampling prioritization on the dataset is able
to achieve better performance both in average and maximum
error. As the dataset grows from the task, it also becomes more
unbalanced as the task presents a lot of straight line and only
occasional changes of direction. This has a negative influence
on the classical training of the neural networks but not on the
prioritized version.

The main advantage of using neural networks is there ability
to model very complex systems. In the previous experiment,
the controller is implemented on top of a low level driver.
Thus, the system model needed by the MPC is almost linear. In
order to test our implementation on a more challenging system,
we add a suspended mass below our drone. This makes the
dynamic of the drone much more complex. Our drone mass is
1.477 kg and we add a mass of 150 g. The distance between
the drone and the mass is constant and we constrain the mass
to stay in a cone of π

3 rad below the drone. In order for our
system to be able to model the system, we increase the history
it has access to. Until now only the two previous step were
considered (i.e. 400ms of history). In order to capture the
effect of the mass we increase this history to ten steps (i.e. 2 s
of history).

First, we compare an ARX model and a neural network
model (without retraining) for the same task as previously.
The neural networks performs better if we keep both controller
running at the same rate.

To evaluate the interest of the prioritized retraining we use
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Table II
MAXIMUM AND AVERAGE ERROR.

ARX Neural Network
max error [m] 2.250 1.536

average error [m] 1.220 0.946
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Figure 5. comparison of neural networks with or without prioritized replay
in term of maximum and average error for a drone with uncertain load.

the same method as before, retraining the neural network
between episodes. The result are shown in the figure 5. In this
case none of the network training yield a better result. There
might be several factor contributing to this. First, the dynamic
being much more complex might require an improvement
on the architecture of the network. Alternatively, for this
experiment, the meta-parameters of the prioritized replay α
and β have been kept from the previous settings but as the
problem differs a new parameter search might be needed.
Finally, the low level controller was calibrated for the normal
drone and wasn’t modified when the mass was added; it is
possible that the interaction between the mass and the driver
makes the dynamic much more stochastic than dynamic, which
is not something system identification will handle easily.

V. CONCLUSIONS

We proposed a method to efficiently train neural networks
for the purpose of system identification based on sample
prioritization. We have compared the results of this modeling
with the standard identification method ARX. We then tested
those models on a drone in a simulated environment and
discussed the limitations of the neural network based approach.

Studying the prioritizing meta-parameters is an interesting
subject for future considerations as they have an influence
on the results. However, an exhaustive grid search is too
expensive to be practical. An automatic method for choosing
these parameters would be of great value and might be helpful
for improving the unbalanced drone problem.

Moreover, there is room for improvement in terms of neural
network design. For example, in order to better take into

account the state history, the use of Recurrent Neural Networks
(RNN) might be interesting.

Another avenue of investigation about the unbalanced drone
is to wonder about the deterministic nature of the problem.
Indeed, the perturbation produced by the mass might make the
problem stochastic, which would require a different approach.
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